1,230 research outputs found

    Quantum Plasmonics

    Get PDF
    Quantum plasmonics is an exciting subbranch of nanoplasmonics where the laws of quantum theory are used to describe light–matter interactions on the nanoscale. Plasmonic materials allow extreme subdiffraction confinement of (quantum or classical) light to regions so small that the quantization of both light and matter may be necessary for an accurate description. State-of-the-art experiments now allow us to probe these regimes and push existing theories to the limits which opens up the possibilities of exploring the nature of many-body collective oscillations as well as developing new plasmonic devices, which use the particle quality of light and the wave quality of matter, and have a wealth of potential applications in sensing, lasing, and quantum computing. This merging of fundamental condensed matter theory with application-rich electromagnetism (and a splash of quantum optics thrown in) gives rise to a fascinating area of modern physics that is still very much in its infancy. In this review, we discuss and compare the key models and experiments used to explore how the quantum nature of electrons impacts plasmonics in the context of quantum size corrections of localized plasmons and quantum tunneling between nanoparticle dimers. We also look at some of the remarkable experiments that are revealing the quantum nature of surface plasmon polaritons

    Properties and occurrence rates of KeplerKepler exoplanet candidates as a function of host star metallicity from the DR25 catalog

    Get PDF
    Correlations between the occurrence rate of exoplanets and their host star properties provide important clues about the planet formation processes. We studied the dependence of the observed properties of exoplanets (radius, mass, and orbital period) as a function of their host star metallicity. We analyzed the planetary radii and orbital periods of over 2800 KeplerKepler candidates from the latest KeplerKepler data release DR25 (Q1-Q17) with revised planetary radii based on GaiaGaia~DR2 as a function of host star metallicity (from the Q1-Q17 (DR25) stellar and planet catalog). With a much larger sample and improved radius measurements, we are able to reconfirm previous results in the literature. We show that the average metallicity of the host star increases as the radius of the planet increases. We demonstrate this by first calculating the average host star metallicity for different radius bins and then supplementing these results by calculating the occurrence rate as a function of planetary radius and host star metallicity. We find a similar trend between host star metallicity and planet mass: the average host star metallicity increases with increasing planet mass. This trend, however, reverses for masses >4.0MJ> 4.0\, M_\mathrm{J}: host star metallicity drops with increasing planetary mass. We further examined the correlation between the host star metallicity and the orbital period of the planet. We find that for planets with orbital periods less than 10 days, the average metallicity of the host star is higher than that for planets with periods greater than 10 days.Comment: 14 pages, 13 Figures, Accepted for publication in The Astronomical Journa

    Photochemical Investigations of Ce(III)-V(V) System in Glasses

    Get PDF
    1092-109

    Evaluation of bacteriological diagnosis of smear positive pulmonary tubreculosis under programme conditions in three districts in the context of DOTS implementation in India

    Get PDF
    Objective: To study the smear and culture positivity rates in pulmonary tuberculosis patients declared as smear positive in the districts of North Arcot (Tamil Nadu), Raichur (Karnataka) and Wardha (Maharashtra) in India in order to evaluate the diagnosis of pulmonary tuberculosis at the field level under programme conditions. Methods: Two specimens of sputum from each of 320 patients in North Arcot, 314 patients in Raichur and 302 patients from Wardha district, all of whom had been reported as smear-positive at the field level, were examined by smear and culture. Findings: The proportion of specimens found to be smear-negative was 4.7% in North Arcot and 5.7% in Raichur as against 38.7% in Wardha. The proportions of culture negative specimens were 5.7% and 6.3% respectively in North Arcot and Raichur, while it was 35.6% at Wardha. The difference in the smear and culture negativity between Wardha and the other two districts was highly significant. Conclusions: The study revealed an unacceptably high level of false positives in sputum smear microscopy in the Wardha district. This could be attributed to the absence of systematic and intensive training in smear examination consequent to the non-implementation of the DOTS strategy in this district and a high standard of training offered in the RNTCP implemented districts

    Performance Assessment of Traditional Software Development Methodologies and DevOps Automation Culture

    Get PDF
    Successful implementations of Software Development Methodologies significantly improve software efficiency, collaboration and security. Most companies are moving away from traditional development methodologies towards DevOps for faster and better software delivery. DevOps, which is a primary need of the IT industry, brings development and operation teams together to overcome communication gaps responsible for software failures. It relies on different sets of automation tools to robotize the tasks of software development from continuous integration, to testing, delivery, and deployment. The existence of several automation tools in each development phase raises the need for an integrated set of tools to reduce development time. For this purpose, we used the DevOps-based hybrid model Integrated Tool Chain (ITC), along with three sample java-based projects or code repositories to quantify the results. This paper evaluates and compares measurement metrics of java projects using traditional development methodologies and DevOps, and the results are shown in tabular and graphical format. The latest Google and Stack Overflow Trends have also been included to retrieve the best performer development methodology. This comparative and evaluative performance analysis will be beneficial to young researchers that study the metrics of software development, while also they will be introduced to the automotive environment of DevOps, the latest emerging buzzword in software development

    Shining Light on the Microscopic Resonant Mechanism Responsible for Cavity-Mediated Chemical Reactivity

    Get PDF
    Strong light-matter interaction in cavity environments has emerged as a promising and general approach to control chemical reactions in a non-intrusive manner. The underlying mechanism that distinguishes between steering, accelerating, or decelerating a chemical reaction has, however, remained thus far largely unclear, hampering progress in this frontier area of research. In this work, we leverage a combination of first-principles techniques, foremost quantum-electrodynamical density functional theory, applied to the recent experimental realization by Thomas et al. [1] to unveil the microscopic mechanism behind the experimentally observed reduced reaction-rate under resonant vibrational strong light-matter coupling. We find that the cavity mode functions as a mediator between different vibrational eigenmodes, transferring vibrational excitation and anharmonicity, correlating vibrations, and ultimately strengthening the chemical bond of interest. Importantly, the resonant feature observed in experiment, theoretically elusive so far, naturally arises in our investigations. Our theoretical predictions in polaritonic chemistry shine new light on cavity induced mechanisms, providing a crucial control strategy in state-of-the-art photocatalysis and energy conversion, pointing the way towards generalized quantum optical control of chemical systems

    Dynamics of photo-induced ferromagnetism in oxides with orbital degeneracy

    Get PDF
    By using intense coherent electromagnetic radiation, it may be possible to manipulate the properties of quantum materials very quickly, or even induce new and potentially useful phases that are absent in equilibrium. For instance, ultrafast control of magnetic dynamics is crucial for a number of proposed spintronic devices and can also shed light on the possible dynamics of correlated phases out of equilibrium. Inspired by recent experiments on spin-orbital ferromagnet YTiO3 we consider the nonequilibrium dynamics of Heisenberg ferromagnetic insulator with low-lying orbital excitations. We model the dynamics of the magnon excitations in this system following an optical pulse which resonantly excites infrared-active phonon modes. As the phonons ring down they can dynamically couple the orbitals with the low-lying magnons, leading to a dramatically modified effective bath for the magnons. We show this transient coupling can lead to a dynamical acceleration of the magnetization dynamics, which is otherwise bottlenecked by small anisotropy. Exploring the parameter space more we find that the magnon dynamics can also even completely reverse, leading to a negative relaxation rate when the pump is blue-detuned with respect to the orbital bath resonance. We therefore show that by using specially targeted optical pulses, one can exert a much greater degree of control over the magnetization dynamics, allowing one to optically steer magnetic order in this system. We conclude by discussing interesting parallels between the magnetization dynamics we find here and recent experiments on photo-induced superconductivity, where it is similarly observed that depending on the initial pump frequency, an apparent metastable superconducting phase emerges
    corecore